Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607933

RESUMO

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas Multifuncionais
2.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553253

RESUMO

N-terminal phosphorylation at residues T3 and S13 is believed to have important beneficial implications for the biological and pathological properties of mutant huntingtin, where inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) was identified as a candidate regulator of huntingtin N-terminal phosphorylation. The paucity of mechanistic information on IKK pathways, together with the lack of sensitive methods to quantify endogenous huntingtin phosphorylation, prevented detailed study of the role of IKBKB in Huntington's disease. Using novel ultrasensitive assays, we demonstrate that IKBKB can regulate endogenous S13 huntingtin phosphorylation in a manner, dependent on its kinase activity and known regulators. We found that the ability of IKBKB to phosphorylate endogenous huntingtin S13 is mediated through a non-canonical interferon regulatory factor3-mediated IKK pathway, distinct from the established involvement of IKBKB in mutant huntingtin's pathological mechanisms mediated via the canonical pathway. Furthermore, increased huntingtin S13 phosphorylation by IKBKB resulted in decreased aggregation of mutant huntingtin in cells, again dependent on its kinase activity. These findings point to a non-canonical IKK pathway linking S13 huntingtin phosphorylation to the pathological properties of mutant huntingtin aggregation, thought to be significant to Huntington's disease.


Assuntos
Doença de Huntington , Quinase I-kappa B , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Serina/metabolismo , Fosforilação
3.
Hum Mol Genet ; 32(1): 30-45, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908190

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an inherited unstable HTT CAG repeat that expands further, thereby eliciting a disease process that may be initiated by polyglutamine-expanded huntingtin or a short polyglutamine-product. Phosphorylation of selected candidate residues is reported to mediate polyglutamine-fragment degradation and toxicity. Here to support the discovery of phosphosites involved in the life-cycle of (full-length) huntingtin, we employed mass spectrometry-based phosphoproteomics to systematically identify sites in purified huntingtin and in the endogenous protein by proteomic and phosphoproteomic analyses of members of an HD neuronal progenitor cell panel. Our results bring total huntingtin phosphosites to 95, with more located in the N-HEAT domain relative to numbers in the Bridge and C-HEAT domains. Moreover, phosphorylation of C-HEAT Ser2550 by cAMP-dependent protein kinase (PKA), the top hit in kinase activity screens, was found to hasten huntingtin degradation, such that levels of the catalytic subunit (PRKACA) were inversely related to huntingtin levels. Taken together, these findings highlight categories of phosphosites that merit further study and provide a phosphosite kinase pair (pSer2550-PKA) with which to investigate the biological processes that regulate huntingtin degradation and thereby influence the steady state levels of huntingtin in HD cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Doença de Huntington , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Temperatura Alta , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Fosforilação , Domínios Proteicos , Proteômica
4.
Hum Mol Genet ; 30(3-4): 135-148, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33432339

RESUMO

Huntington's disease pathogenesis involves a genetic gain-of-function toxicity mechanism triggered by the expanded HTT CAG repeat. Current therapeutic efforts aim to suppress expression of total or mutant huntingtin, though the relationship of huntingtin's normal activities to the gain-of-function mechanism and what the effects of huntingtin-lowering might be are unclear. Here, we have re-investigated a rare family segregating two presumed HTT loss-of-function (LoF) variants associated with the developmental disorder, Lopes-Maciel-Rodan syndrome (LOMARS), using whole-genome sequencing of DNA from cell lines, in conjunction with analysis of mRNA and protein expression. Our findings correct the muddled annotation of these HTT variants, reaffirm they are the genetic cause of the LOMARS phenotype and demonstrate that each variant is a huntingtin hypomorphic mutation. The NM_002111.8: c.4469+1G>A splice donor variant results in aberrant (exon 34) splicing and severely reduced mRNA, whereas, surprisingly, the NM_002111.8: c.8157T>A NP_002102.4: Phe2719Leu missense variant results in abnormally rapid turnover of the Leu2719 huntingtin protein. Thus, although rare and subject to an as yet unknown LoF intolerance at the population level, bona fide HTT LoF variants can be transmitted by normal individuals leading to severe consequences in compound heterozygotes due to huntingtin deficiency.


Assuntos
Regulação da Expressão Gênica , Proteína Huntingtina/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Sequência de Aminoácidos , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/metabolismo , Linhagem , Fenótipo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
5.
Hum Mol Genet ; 29(18): 3044-3053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32876667

RESUMO

Recent genome-wide association studies of age-at-onset in Huntington's disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Assuntos
Proteínas de Ciclo Celular/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Ribonucleotídeo Redutases/genética , Idade de Início , Animais , Modelos Animais de Doenças , Genes Modificadores/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
6.
Am J Hum Genet ; 107(1): 96-110, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32589923

RESUMO

A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.


Assuntos
Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Linhagem Celular , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
7.
Biochem Biophys Res Commun ; 521(3): 549-554, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677786

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expansion of a CAG triplet repeat (encoding for a polyglutamine tract) within the first exon of the huntingtin gene. Expression of the mutant huntingtin (mHTT) protein can result in the production of N-terminal fragments with a robust propensity to form oligomers and aggregates, which may be causally associated with HD pathology. Several lines of evidence indicate that N17 phosphorylation or pseudophosphorylation at any of the residues T3, S13 or S16, alone or in combination, modulates mHTT aggregation, subcellular localization and toxicity. Consequently, increasing N17 phosphorylation has been proposed as a potential therapeutic approach. However, developing genetic/pharmacological tools to quantify these phosphorylation events is necessary in order to subsequently develop tool modulators, which is difficult given the transient and incompletely penetrant nature of such post-translational modifications. Here we describe the first ultrasensitive sandwich immunoassay that quantifies HTT phosphorylated at residue S13 and demonstrate its utility for specific analyte detection in preclinical models of HD.


Assuntos
Proteína Huntingtina/análise , Animais , Células Cultivadas , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Camundongos , Mutação , Neurônios/química , Neurônios/metabolismo , Fosforilação , Agregados Proteicos , Processamento de Proteína Pós-Traducional
8.
J Hum Genet ; 64(10): 995-1004, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31296921

RESUMO

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in the first exon of the huntingtin gene (HTT). Since the entire course of the disease starts from this dominant gain-of-function mutation, lowering total or mutant huntingtin mRNA/protein has emerged as an appealing therapeutic strategy. We reasoned that endogenous mechanisms underlying HTT gene regulation may inform strategies to target the source of the disease. As part of our investigation to understand how the expression of HTT is controlled, we performed (1) complete sequencing analysis for mutant HTT 3'-UTR and (2) unbiased screening assays to identify naturally-occurring miRNAs that could lower the HTT mRNA levels. By sequencing HD families inheriting the major European mutant haplotype, we determined the full sequence of HTT 3'-UTRs of the most frequent mutant (i.e., hap.01) and normal (i.e., hap.08) haplotypes, revealing 5 sites with alternative alleles. In subsequent miRNA activity assays using the full-length hap.01 and hap.08 3'-UTR reporter vectors and follow-up validation experiments, hsa-miR-4324 and hsa-miR-4756-5p significantly reduced HTT 3'-UTR reporter activity and endogenous HTT protein levels. However, those miRNAs did not show strong haplotype-specific effects. Nevertheless, our data highlighting full sequences of HTT 3'-UTR haplotypes, effects of miRNAs on HTT levels, and potential interaction sites provide rationale and promising targets for total and mutant-specific HTT lowering intervention strategies using endogenous and artificial miRNAs, respectively.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Alelos , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Haplótipos , Humanos , Proteína Huntingtina/metabolismo , Mutação
9.
Mol Ther Nucleic Acids ; 11: 416-428, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858077

RESUMO

The CAG repeat expansion that elongates the polyglutamine tract in huntingtin is the root genetic cause of Huntington's disease (HD), a debilitating neurodegenerative disorder. This seemingly slight change to the primary amino acid sequence alters the physical structure of the mutant protein and alters its activity. We have identified a set of G-quadruplex-forming DNA aptamers (MS1, MS2, MS3, MS4) that bind mutant huntingtin proximal to lysines K2932/K2934 in the C-terminal CTD-II domain. Aptamer binding to mutant huntingtin abrogated the enhanced polycomb repressive complex 2 (PRC2) stimulatory activity conferred by the expanded polyglutamine tract. In HD, but not normal, neuronal progenitor cells (NPCs), MS3 aptamer co-localized with endogenous mutant huntingtin and was associated with significantly decreased PRC2 activity. Furthermore, MS3 transfection protected HD NPCs against starvation-dependent stress with increased ATP. Therefore, DNA aptamers can preferentially target mutant huntingtin and modulate a gain of function endowed by the elongated polyglutamine segment. These mutant huntingtin binding aptamers provide novel molecular tools for delineating the effects of the HD mutation and encourage mutant huntingtin structure-based approaches to therapeutic development.

10.
Hum Mol Genet ; 26(7): 1258-1267, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165127

RESUMO

Huntington's disease (HD) reflects dominant consequences of a CAG repeat expansion mutation in HTT. Expanded CAG repeat size is the primary determinant of age at onset and age at death in HD. Although HD pathogenesis is driven by the expanded CAG repeat, whether the mutation influences the expression levels of mRNA and protein from the disease allele is not clear due to the lack of sensitive allele-specific quantification methods and the presence of confounding factors. To determine the impact of CAG expansion at the molecular level, we have developed novel allele-specific HTT mRNA and protein quantification methods based on principles of multiplex ligation-dependent probe amplification and targeted MS/MS parallel reaction monitoring, respectively. These assays, exhibiting high levels of specificity and sensitivity, were designed to distinguish allelic products based upon expressed polymorphic variants in HTT, including rs149 109 767. To control for other cis-haplotype variations, we applied allele-specific quantification assays to a panel of HD lymphoblastoid cell lines, each carrying the major European disease haplotype (i.e. hap.01) on the mutant chromosome. We found that steady state levels of HTT mRNA and protein were not associated with expanded CAG repeat length. Rather, the products of mutant and normal alleles, both mRNA and protein, were balanced, thereby arguing that a cis-regulatory effect of the expanded CAG repeat is not a critical component of the underlying mechanism of HD. These robust allele-specific assays could prove valuable for monitoring the impact of allele-specific gene silencing strategies currently being explored as therapeutic interventions in HD.


Assuntos
Encéfalo/metabolismo , Proteína Huntingtina/biossíntese , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idade de Início , Alelos , Autopsia , Encéfalo/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Masculino , RNA Mensageiro/biossíntese
11.
Nat Neurosci ; 18(11): 1617-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436900

RESUMO

Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.


Assuntos
Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Vocalização Animal/fisiologia , Animais , Animais Geneticamente Modificados , Gânglios da Base/fisiologia , Tentilhões , Humanos , Proteína Huntingtina , Aves Canoras/fisiologia
12.
J Neurosci ; 28(23): 5910-9, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18524895

RESUMO

The navigation of retinal axons to ipsilateral and contralateral targets in the brain depends on the decision to cross or avoid the midline at the optic chiasm, a critical guidance maneuver that establishes the binocular visual pathway. Previous work has identified a specific guidance receptor, EphB1, that mediates the repulsion of uncrossed axons away from its ligand, ephrinB2, at the optic chiasm midline (Williams et al., 2003), and a transcription factor Zic2, that, like EphB1, is required for formation of the ipsilateral retinal projection (Herrera et al., 2003). Although the reported similarities in localization implicated that Zic2 regulates EphB1 (Herrera et al., 2003; Williams et al., 2003; Pak et al., 2004), whether Zic2 drives expression of EphB1 protein has not been elucidated. Here we show that EphB1 protein is expressed in the growth cones of axons from ventrotemporal (VT) retina that project ipsilaterally and that repulsion by ephrinB2 is determined by the presence of this receptor on growth cones. Moreover, ectopic delivery of Zic2 into explants from non-VT retina induces expression of EphB1 mRNA and protein. The upregulated EphB1 receptor protein is localized to growth cones and is functional, because it is sufficient to change retinal ganglion cell axon behavior from extension onto, to avoidance of, ephrinB2 substrates. Our results demonstrate that Zic2 upregulates EphB1 expression and define a link between a transcription factor and expression of a guidance receptor protein essential for axon guidance at the vertebrate midline.


Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptor EphB1/biossíntese , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição/fisiologia , Dedos de Zinco/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Mutantes , Gravidez , Receptor EphB1/genética , Receptor EphB1/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
13.
J Neurosci ; 25(22): 5455-63, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15930396

RESUMO

Brain-derived neurotrophic factor (BDNF) is best characterized for critical roles in neuronal survival, differentiation, and synaptic modulation mediated by the TrkB receptor tyrosine kinase. Developmentally regulated death signaling by BDNF has also been demonstrated via activation of p75NTR. Because recent studies suggest that proNGF, the precursor form of NGF, is more active than mature NGF in inducing apoptosis after binding to p75NTR and a coreceptor, sortilin, we asked whether the precursor of BDNF (proBDNF) is also a proapoptotic ligand in the nervous system. proBDNF is secreted by cultured neurons, and recombinant proBDNF binds to sortilin. In sympathetic neurons coexpressing sortilin and p75NTR, we found that proBDNF is an apoptotic ligand that induces death at subnanomolar concentrations. In contrast, mature BDNF, but not proBDNF, is effective in inducing TrkB phosphorylation. proBDNF effects are dependent on cellular coexpression of both p75NTR and sortilin, because neurons deficient in p75NTR are resistant to proBDNF-induced apoptosis, and competitive antagonists of sortilin block sympathetic neuron death. Moreover, addition of preformed complexes of soluble sortilin and proBDNF failed to induce apoptosis of cells coexpressing both sortilin and p75NTR, suggesting that interaction of proBDNF with both receptors on the cell surface is required to initiate cell death. Together with our past findings, these data suggest that the neurotrophin family is capable of modulating diverse biological processes via differential processing of the proneurotrophins.


Assuntos
Apoptose , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Precursores de Proteínas/fisiologia , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Encéfalo/citologia , Linhagem Celular , Humanos , Ligantes , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/genética , Receptor trkB/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fator de Crescimento Neural , Células de Schwann/citologia , Células de Schwann/metabolismo , Gânglio Cervical Superior/citologia
14.
Am J Pathol ; 166(2): 533-43, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15681836

RESUMO

The pro-form of nerve growth factor (pro-NGF) has been shown to be a high affinity ligand for p75NTR and to induce apoptosis through this receptor. It has been reported that pro-NGF, rather than mature NGF, is the predominant form of this neurotrophin in human brain. In the present work we studied the potential involvement of pro-NGF purified from human brains affected by Alzheimer's disease (AD), where it is especially abundant, in the neuronal apoptosis observed in this disease. Western blot analysis of human brain tissue showed the existence of several pro-NGF forms. Some of these pro-NGF forms were significantly increased in AD brain cortex in a disease stage-dependent manner. Pro-NGF, purified by chromatography from human AD brains, induced apoptotic cell death in sympathetic neurons and in a p75NTR stably transfected cell line. Blocking p75NTR in cell culture abolished neuronal apoptosis caused by pro-NGF. p75NTR-transfected cells underwent apoptosis in the presence of pro-NGF while control wild-type cells did not. Taken together, these results indicate that pro-NGF purified from AD human brains can induce apoptosis in neuronal cell cultures through its interaction with the p75NTR receptor.


Assuntos
Apoptose , Fator de Crescimento Neural/biossíntese , Fator de Crescimento Neural/fisiologia , Neurônios/patologia , Precursores de Proteínas/biossíntese , Precursores de Proteínas/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Células 3T3 , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Cromatografia , Densitometria , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Crescimento Neural/metabolismo , Células PC12 , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural , Fatores de Tempo , Transfecção , Tripsina/farmacologia
15.
J Neurosci ; 24(11): 2742-9, 2004 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-15028767

RESUMO

Nerve growth factor (NGF) functions as a ligand for two receptors, the TrkA tyrosine kinase receptor and the p75 neurotrophin receptor (p75NTR). The Ig-like domains of Trk receptors and the cysteine-rich repeats of p75NTR are involved in binding to the neurotrophins. Recently, a closely related gene to p75NTR called neurotrophin receptor homolog-2 (NRH2) was identified; however, the function of NRH2 and its relevance to neurotrophin signaling are unclear. NRH2 contains a similar transmembrane and intracellular domain as p75NTR but lacks the characteristic cysteine-rich repeats in the extracellular domain. Here we show that NRH2 is expressed in several neuronal populations that also express p75NTR and Trk receptors. NRH2 does not bind to NGF; however, coimmunoprecipitation experiments demonstrate that NRH2 is capable of interacting with TrkA receptors. Coexpression of NRH2 with TrkA receptors resulted in the formation of high-affinity binding sites for NGF. These results indicate that a transmembrane protein related to p75NTR is capable of modulating Trk receptor binding properties.


Assuntos
Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Reagentes de Ligações Cruzadas/farmacologia , Gânglios Espinais/metabolismo , Rim/citologia , Rim/metabolismo , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Receptor de Fator de Crescimento Neural , Homologia de Sequência de Aminoácidos , Medula Espinal/metabolismo
16.
Nature ; 427(6977): 843-8, 2004 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-14985763

RESUMO

Sortilin (approximately 95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects. These neurotrophins can be released by neuronal tissues, and they regulate neuronal development through cell survival and cell death signalling. NGF regulates cell survival and cell death via binding to two different receptors, TrkA and p75NTR (ref. 10). In contrast, proNGF selectively induces apoptosis through p75NTR but not TrkA. However, not all p75NTR-expressing cells respond to proNGF, suggesting that additional membrane proteins are required for the induction of cell death. Here we report that proNGF creates a signalling complex by simultaneously binding to p75NTR and sortilin. Thus sortilin acts as a co-receptor and molecular switch governing the p75NTR-mediated pro-apoptotic signal induced by proNGF.


Assuntos
Apoptose/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Precursores de Proteínas/farmacologia , Receptor trkA , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligantes , Substâncias Macromoleculares , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Peso Molecular , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Ligação Proteica/efeitos dos fármacos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/metabolismo
17.
Neuron ; 36(3): 375-86, 2002 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12408842

RESUMO

The neurotrophin receptor p75 is induced by various injuries to the nervous system, but its role after injury has remained unclear. Here, we report that p75 is required for the death of oligodendrocytes following spinal cord injury, and its action is mediated mainly by proNGF. Oligodendrocytes undergoing apoptosis expressed p75, and the absence of p75 resulted in a decrease in the number of apoptotic oligodendrocytes and increased survival of oligodendrocytes. ProNGF is likely responsible for activating p75 in vivo, since the proNGF from the injured spinal cord induced apoptosis among p75(+/+), but not among p75(-/-), oligodendrocytes in culture, and its action was blocked by proNGF-specific antibody. Together, these data suggest that the role of proNGF is to eliminate damaged cells by activating the apoptotic machinery of p75 after injury.


Assuntos
Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Crescimento Neural/metabolismo , Oligodendroglia/metabolismo , Precursores de Proteínas/metabolismo , Receptor de Fator de Crescimento Neural/deficiência , Traumatismos da Medula Espinal/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Caspase 3 , Caspases/metabolismo , Sobrevivência Celular/fisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/imunologia , Fator de Crescimento Neural/farmacologia , Precursores de Proteínas/imunologia , Precursores de Proteínas/farmacologia , Proteínas/metabolismo , Tempo de Reação/fisiologia , Receptor de Fator de Crescimento Neural/efeitos dos fármacos , Receptor de Fator de Crescimento Neural/genética , Proteínas Recombinantes de Fusão , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...